
2020. november 29-én, egy szép vasárnap délutánon a Portfolio.hu címlapján 44 darab szám kezdődött 1-essel, 31 db 2-essel és 23 db 3-assal. Minél nagyobb egy szám, úgy tűnik, annál ritkábban fordul elő kezdő számjegyként - vonjuk le a következtetést a kávénkat kortyolgatva. Nem, egyelőre még nem őrültünk meg és nem is agyzsibbasztó számmisztikáról fogunk beszélni, hanem egy különös jelenségről: a Benford-szabályról.
Ez az a megfigyelés, amivel le lehetett volna buktatni a görög hatóságokat, amikor hamis makrogazdasági statisztikákkal léptek be az eurózónába. Ez az a módszer, ami elárulja, ha hazudnak a COVID-esetek számáról, vagy ha éppen elcsalják valahol a választást. Persze minden ilyen módszernek megvan a maga korlátja, de a Benford-szabály mégis egy olyan eszköz, amit ma már nem csak a tudományos kutatásokban, hanem a gyakorlati életben is előszeretettel használnak adatmanipulációk felderítésére.
Kezdjünk is bele!
A történetünk több mint 100 évvel ezelőttre nyúlik vissza, amikor is egy bizonyos Simon Newcomb nevű csillagász logaritmus táblázatokat lapozgatott és valami egészen furcsa jelenségre lett figyelmes. Feltűnt neki, hogy az első lapok (amik sorszáma 1-essel kezdődött) jóval megviseltebb voltak a többinél. A dolgot furcsállni kezdte, hiszen nem tűnik magától értetődőnek, hogy miért pont azokat a logaritmusokat felsoroló lapokat keressék fel a legtöbben.
A megfigyeléseit pontosan számszerűsítette is, majd 1881-ben pedig le is publikálta. Pechére ezt a furcsa jelenséget mégsem róla nevezték el: nála is bekövetkezett tehát a tudósok rémálma: Stigler eponimia törvénye. 1938-ban ugyanis egy Frank Benford nevű fizikus ismét rátalált erre a furcsa jelenségre. Észrevette, hogy a természetes megfigyelésekből eredő adatok első számjegyeinek a gyakorisága kissé furcsa.
Benford több mint 20 ezer számot jegyzett fel olyan különböző területekről, mint például a molekulák súlya, egy matematikai kézikönyv bejegyzései, vagy éppen 335 folyó méretének a leírásai. Ezek az igen különböző forrásokból jövő számok egyértelműen azt mutatták, hogy a első számjegyek gyakorisági eloszlása nem egyenletes.
Annak a valószínűsége, hogy egy véletlenül kiválasztott szám 1-essel kezdődik durván 30%, míg az, hogy 9-essel, már kevesebb mint 5%.
A jelenséget Benford az 1938-as publikációjában a rendellenes számok törvényének nevezte, és az írása „virális lett”, ha lehet ilyet mondani. Innentől kezdve pedig a legtöbben Benford-szabályként kezdtek hivatkozni erre a különös jelenségre, és csak az igazán jószívű tudósok jegyzik meg, hogy ez valójában a Newcomb-Benford-szabály.
Jegyezzük itt ugyanakkor meg, hogy a Benford-szabály (mi is már csak így fogunk rá hivatkozni, mert így lett közismert) azért nem minden esetben érvényesül. Vannak ugyanis olyan jól dokumentált körülmények, amik ennek a „szabálynak” a kibontakozását ellehetetlenítik. Amennyiben az előálló számok egy jól behatárolható sávban mozognak, mint amilyen például az emberek testmagassága vagy az IQ-ja, akkor máris elromlik a dolog. Viszont a legtöbb olyan természetesen előálló számnál, amely több nagyságrenden keresztül ível át, már általában érvényesül. Méghozzá számrendszertől függetlenül, ami elsőre meghökkentő lehet.
Ez hogyan lehetséges?
A Benford-szabály sokakból hitetlenkedést vált ki, még annak ellenére is, hogy az igen könnyen tesztelhető. A legtöbbünk alapgondolata ugyanis az, hogy amennyiben véletlen jelenségeket nézünk, akkor egyenlő valószínűséggel kellene előfordulnia 1-től 9-ig a számoknak, vagyis mindegyikükkel az esetek 11,1%-ában kellene találkoznunk. De ez nagyon gyakran még sincs így, és ennek egy speciális oka van, amit a következő példán magyarázunk el.
Képzeljünk el egy nagyon egyszerű tombolasorsolást, ahol kezdetben kilenc ajándék van csak és így kilenc számot húznak ki. Ilyenkor még nyilvánvalóan csak 11,1% esélyünk van rá, hogy 1-es lesz a kihúzott szám. De amint 10-re növeljük a sorszámokat, már kettő szám fog 1-essel kezdődni: az 1-es és a 10-es. Ekkor annak a valószínűsége, hogy 1-el kezdődik a kihúzott szám, hirtelen megugrik 20%-ra. Ahogy pedig felmegyünk 19-ig, úgy folyamatosan nő az 1-essel kezdődő számok valószínűsége, hogy aztán durván 58%-on tetőzzön.
A 20. tombolától kezdve viszont ismét csökkenni kezd az 1-essel kezdődő számok valószínűsége, 99-nél pedig már vissza is térünk a kiinduló 11,1%-os értékre. Pont ahonnan indultunk. Aztán amint nagyságrendet ugrunk, a 100-asok klubjába lépve újra megindul az emelkedés, és ez a történet így megy tovább a végtelenségig. Minden egyes tízes nagyságrend megugrása után emelkedésnek indul az 1-essel kezdődő számok valószínűsége, majd pedig csak fokozatosan tér vissza a következő ugrás bekövetkeztéig a 11,1%-hoz.
Ennek az ingadozásnak a megértése a kulcs a Benford-szabályhoz. A való életben ugyanis az történik, hogy a sok nagyságrenden átívelő véletlenszerű számok bárhol lehetnek, és ezért ki kell átlagolnunk valamiképpen ezt az ingadozó valószínűséget.
E fenti számítás általános formájához pusztán a logaritmusszámítást kell ismernünk (amit ahogy korábban már megírtuk: az agyunk zsigerből tud). A formula a következő egy d-vel jelölt kezdő számjegyre:

10-es alapú logartimust véve könnyen kiszámolható, hogy az 1-essel kezdődő számok gyakorisága 30,1% körül lesz, míg a 9-eseké 4,6% körül. Fontos még hozzátenni, hogy az újabbnál újabb kutatások sorra megerősítették a Benford-szabály érvényességét a legkülönbözőbb adatforrásokon alapulva. Az is kiderült továbbá, hogy nem feltétlenül kell az adatoknak sok nagyságrenden átívelnie, ha azok egymástól különböző forrásokból származnak (vagyis véletlenszerű, hogy milyen az eloszlásuk).
A számok nem hazudnak
Ez mind szép és jó, de vajon mi ennek az egésznek a gyakorlati haszna? Nos, a válasz az, hogy ez a jelenség igencsak hasznos eszköz lehet arra, hogy „hazugságvizsgálat” alá helyezzünk társadalmi vagy gazdasági mutatókat.
A hétköznapi élet során előálló statisztikák és számszerű adatok ugyanis nagyon sok esetben megfelelnek a Benford-szabály minimum követelményeinek, más szóval: ezek a számok mind a fentiekben előírt gyakoriságok szerint kell, hogy megjelenjenek. Amennyiben mégsem így találjuk, akkor feltételezhető, hogy azokat valaki kézzel manipulálta.
Így történt például a görögök eurózónába való csatlakozásakor is, ahol is a makrogazdasági statisztikákról derült ki (késve), hogy azok valamilyen különös oknál fogva nem mentek át a Benford-teszten. De ugyanezt a módszert vetették be számos gazdasági csalás vizsgálatánál is, mint amilyen például az elhíresült Enron-botrány volt.
Az elmúlt időszakban pedig választások tisztaságára, illetve a COVID-19-ről közölt adatok ellenőrzésére is bevetették a Benford-szabályt, amiről később még külön beszélni fogunk itt a Portfolio Prof hasábjain.
Fontos adatok érkeztek az USA-ból - Mutatjuk a tőzsdei reakciókat
Nagy meglepetést okozott az ADP-jelentés.
Meglépte Irán, amitől mindenki rettegett - Ezt Amerika sem hagyta szó nélkül
Azonnali cselekvésre szólították fel Teheránt.
Csaknem három év után beszélt egymással Macron és Putyin, Ukrajna felé tartó amerikai fegyverszállítmányok álltak le – Háborús híreink szerdán
Folyamatosan frissülő hírfolyamunk.
Döntött Donald Trump: létfontosságú fegyverektől esik el Ukrajna
Nélkülözhetetlen high-tech eszközökről van szó.
VIDEÓ! Német fiskális fordulat: kiaknázatlan részvénylehetőségek?
2025-ben Németország történelmi léptékű, több mint 500 milliárd eurós, 12 év alatt megvalósuló fiskális élénkítő programot hirdetett meg a gazdaság új pályára állítására. A csoma
3 százalékos lakáshitel jön az első lakásvásárlóknak - itt vannak a részletek!
Orbán Viktor mai bejelentése felrobbantotta az internetet: új, 3%-os lakáshitelt vezetnek be első lakásvásárlóknak - bárki és bárhol igényelheti majd. De mit jelent ez pontosan? Idő közben m
Fenntartható papír falevelekből
A lehullott falevelek is tartalmazzák a papírgyártás legfontosabb alapanyagát a cellulózt.
Új bróker a magyar piacon - XTB
Talán kevesen tudják, de az XTB eddig csupán CFD platform volt Magyarországon (más országokban végzett klasszikus bróker tevékenységeket is). Éppen ezért én sem írtam róluk soha . Múlt hét
Mi történik, ha nem tudod fizetni a hiteledet?
HitelesAndrás - Keress, kövess, költözz! Mi történik, ha nem tudod fizetni a hiteledet? Félelem a hiteltől Az egyik leggyakoribb érv, amit sokan a hitelfelvétel ellen hoznak fel, az az, hogy ha
Finomhangolás a bizalmi vagyonkezelők és a vagyonkezelő alapítványok szabályozásában
2025. június 19-én hirdették ki az egyes adókötelezettségekről és egyes adótörvények módosításáról szóló 2025. évi LIV. törvényt. A módosítások egy része az osztalékkövetelések
Megjelent a QS 2026: így rangsorolják a világ egyetemeit
A QS World University Rankings 2026-os friss kiadása ismét rangsorba állította a világ egyetemeit. Az élen változatlanul a MIT áll, de számos intézmény látványosan előrelépett, különösen
A világ 100 legbefolyásosabb vállalata között a Polymarket
A TIME magazin \"Top 100 legbefolyásosabb vállalat 2025-ben\" listáját böngészve örömmel konstatáltam, hogy többek között a BYD, a Palantir és a SpaceX mellett a kedvenc...
The post A világ 1


- Kényszerszövetségesével bukhat Magyarország, Ursula von der Leyen megtalálta a kiskaput
- Nagy megszorításról döntött a magyar kormány
- Figyelem, napelemesek: holnap jön az új adatszolgáltatási kötelezettség
- Szép csendben megindultak a kirúgások Magyarországon, és még nincs vége a leépítési hullámnak
- Megjelent a kormány új ingyenhitele, élelmes magyarok tízezrei mozdultak rá azonnal
Hogyan vágj bele a tőzsdei befektetésbe?
Első lépések a tőzsdei befektetés terén. Mire kell figyelned? Melyek az első lépések? Mely tőzsdei termékeket célszerű mindenképpen ismerned?
Warren Buffett helyett én: Kezdők útmutatója a befektetéshez
Fedezd fel a befektetés világát úgy, ahogy még sosem! Ez a webinárium egyszerűen és érthetően mutatja be az alapelveket, amelyekre még a legnagyobb befektetők, mint Warren Buffett is esküsznek.
Lépett a kormány: elég segítség ez a legnagyobb veszéllyel küzdő gazdáknak?
10 milliárd forintos támogatással mentenék meg a nyarat.
Az energiatárolás nem csupán egy termék, hanem komplex szolgáltatás
Így termelj, tárolj és válj le a hálózatról egyszer és mindenkorra!
Meddig tart még a dollár mélyrepülése és a forint diadalmenete?
Nincs bizalom az amerikai gazdaság iránt.
Eladó új építésű lakások
Válogass több ezer új lakóparki lakás közül Budán, Pesten, az agglomerációban, vagy vidéken.