
Az alábbiakban Csikász-Nagy Attila és Pongor Sándor, a Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar egyetemi tanárainak írását közöljük.
A virtuális Szeged
Az ágens-alapú modellünket úgy kell elképzelni, mint egy városszimulátort, ahol az emberek mint ágensek, laknak, munkába, étterembe, vásárolni járnak és eközben meg is tudják fertőzni egymást. Bár grafikailag természetesen messze nem ér a nyomukba, de a SimCity™ és más hasonló városszimulátoroktól éppen az különbözteti meg a modellt, hogy a szimulált város lakóinak, illetve a munkahelyek és az üzletek térbeli pozícióinak meghatározásához valós adatokat használtunk fel. Ezáltal lehetséges szimulálni, hogyan változik a fertőzés terjedése, figyelembe véve azt a lehetőséget is, ha különböző korlátozó intézkedéseket hoznak a valóságban. Beállítottuk például, hogy 2020 november 11-e után este 8 és reggel 5 között a szimulációban is mindenki az otthonában tartózkodik, az éttermek zárva vannak és nagyobb rendezvényhelyszínek sem üzemelnek.
A szimulátor jelenleg Szeged város adataival dolgozik, vagyis 160.750 helyi és 25 ezer ingázó ágens mozgását szimulálja a város 3245 helyszíne (boltok, éttermek, egyéb intézmények) és lakóhelye (hozzávetőleg 73.000 háztartás) között. Mindezt pedig úgy kell elképzelni, hogy a modellhez valós statisztikák alapján, miszerint melyik környéken hány ember lakik és azok milyen korúak, virtuális lakosokat generáltunk. Az így kapott, személyes adatokat nélkülöző csoport minden tagjához pedig véletlenszerűen életkort, lakhelyet, valamint korának megfelelő munkahelyet, iskolát kapcsoltunk, és minden ágens kapott egy kedvenc bevásárlóhelyet is a virtuális lakóhelye környékén. Ezután minden napra, éjféli kezdéssel minden ágensnek meghatároztuk, hogy aznap milyen tevékenységet fog végezni, hova fog menni. Ha épp hétköznap van, akkor munkába, iskolába megy, délután esetleg moziba, étterembe, bevásárolni stb. Hétvégén pedig a városi parkokba, nagyobb bevásárlóközpontokba, vagy esetleg más családokhoz mennek a szimulált ágens-emberek. A modellünk természetesen mindig figyelembe veszi, hogy aktuálisan milyen korlátozások vannak érvényben a valóságban.

Ezen a térképen például az látható, hogy hol, mennyien tartózkodnak egy adott időpillanatban, még a fertőzés terjedése nélkül. A körök mérete arányos az adott helyszínen jelenlévő virtuális emberek számával, a színek pedig a különböző helyszíntípusoknak felelnek meg, ahol a kék az otthonokat jelöli. A különböző helyszínek felkeresésének valószínűségeit úgy állítottuk be, hogy egy a valóságban is elképzelhető mozgásmintázatot adjanak. Ezen a videón egy hét mozgási eseményei követhetők nyomon a vírus terjedése nélkül.
Megjelenik a fertőzés
Amikor ezek a virtuális mozgások egy valóságnak megfelelő mintát mutatnak, hozzáadjuk a rendszerhez a vírus terjedését, egy vagy több ágenst fertőzőnek állítva be. A vírushordozásnak több szintje lehet a modellben :
- 0 - friss fertőzött (látens),
- 1 - már fertőző fertőzött,
- 2 - tünetmentes hordozó,
- 3 - enyhébb tüneteket mutató fertőzött,
- 4 - közepes súlyosságú tüneteket mutató fertőzött,
- 5 - kórházi kezelésre szoruló beteg,
- 6 - lélegeztetésre szoruló beteg,
- 7 - meghalt beteg.
Minden fertőzött ágens állapota tehát e fázisok között változik: van, aki csak a 2-es szintig jut el és nem veszi észre, hogy fertőző; de van, aki a 6. fázisig jut; és van, aki ez után sajnos meg is hal (7.). Ha egy ágens a 3-as, 4-es fázisban van, akkor nagyobb valószínűséggel marad otthon. Az 5-ös, 6-os szinten lévő elmegy a modell legközelebbi kórház-helyszínére, és a stádium végéig ott is marad. A különböző szinteken (2-6.) lévő ágensek, a valóságos Covid-statisztikáknak megfelelően, bizonyos valószínűséggel meg is tudnak gyógyulni. Ha pedig egy fertőző ágens egy adott helyszínen tartózkodik egy vagy több, még nem fertőzött ágenssel, akkor átadhatja a fertőzést más ágenseknek is, akik így bekerülnek a fertőzés 0-ás szintjére.
A szimuláció folyamán folyamatosan követhető, hogy hol hányan fertőződtek,
hányan kerültek kórházba, hányan haltak meg, és még számos egyéb értéket figyelve készülhetnek statisztikák.
Az így keletkező virtuális statisztikák nagymértékben függnek a modellben beállított paraméterektől. Azoktól a valószínűségi számoktól tehát, amelyek bizonyos események bekövetkezését meghatározzák a szimuláció folyamán egy adott ágens esetében (pl. milyen valószínűséggel lesz egy egészséges vagy krónikus betegséggel küzdő, adott korú ágens tünetmentes hordozó). Ezek közül a számok közül igen sokat meghatároztak már klinikai megfigyelésekkel is, de több olyan van, amelyeket jelenleg nem lehet adatokból közvetlenül meghatározni (pl. egy fertőző személy egy bizonyos méretű helyszínen milyen valószínűséggel adja át a vírust másoknak). Ezen értékek megállapításához ezért a valóságban megfigyelt fertőzési adatokhoz illesztjük a szimulációink eredményeit a paraméterek változtatásaival.
A hazai ágens-alapú modell háttere
A modell kidolgozását és analízisét a Pázmány Péter Katolikus Egyetem (PPKE) Információs Technológiai és Bionikai Karának oktatói (Csercsik Dávid, Cserey György, Csikász-Nagy Attila, Iván Kristóf, Juhász János, Pongor Sándor, Reguly István, Tornai Kálmán, Szederkényi Gábor), doktoranduszai és hallgatói (Bagdi Richárd, Bujtár Zsófia, Horváth Gergely, Keömley-Horváth Bence, Kós Tamás) végezték. A cikk megírásában Serf András kollégájuk volt még segítségükre. A valós adatok integrációjához segítséget kaptak a Lechner Tudásközpont (Juhász Géza Péter, Nagy András) és a GeoX Kft. (Prajczer Tamás) munkatársaitól, valamint Szeged város alpolgármesterétől, Nagy Sándortól. A Szegedi Tudományegyetem részéről a modell kialakításában közreműködött Vizi Zsolt és Röst Gergely, a Járványmatematikai Modellező és Epidemiológiai Elemző Csoport vezetője. Az interdiszciplináris csoport az ITM koordinálásával jött létre, különböző tudományterületeken dolgozó szakértők együttműködésével az ország számos egyeteméről és kutatóintézetéből. Ennek keretében indult el az ágens alapú COVID-19 modell fejlesztése is.
Mit okoznak az intézkedések?
Az alábbi ábrán a különböző beavatkozási beállításokkal szimulált szegedi kórházban ápoltak számának alakulása és a COVID-19 betegségben összesen elhunyt virtuális ágensek száma látható. A szimuláció 0-52. napja között, a szeptember 23 - november 11 közti valós szegedi adatokhoz (fekete görbe az elhalálozási ábrán) igazítottuk a szimulációk lefutását. November 11-én korlátozásokat jelentettek be, úgy mint az esti-éjszakai kijárási tilalmat, vendéglátóipari egységek és középiskolák bezárását. A szimulációink görbéi pontosan mutatják, hogy ha nem történt volna korlátozás, mennyire emelkedett volna a kórházban ápolt szegediek száma, és emiatt hogyan nőtt volna meg a halottak száma is (piros görbék), míg az ágensek este 8 és reggel 5 közötti otthon tartózkodása, a középiskolák és a vendéglátóipari egységek lezárása mennyire lassította le a kórházban fekvő betegek számának növekedését (kék és zöld görbe együtt fut).

A következő intézkedés-változtatási pont - ahogyan a valóságban is - január 11-e (a szimulációban a 113. nap). A szimulációinkkal itt azt vizsgáltuk, hogyan alakulna a kórházban ápoltak száma, ha fennmarad az összes korlátozás (kék), vagy ha újraindulnak a középiskolák, kinyitnak a vendéglátóipari egységek és megszűnik a kijárási korlátozás is (zöld). A modellünk szerint az eredményre legnagyobb hatással a kijárási korlátozás van. Ez részben azért adódik, mert este 8 előtt a szimulációban kevesen mennek vendéglátóhelyekre, így a kijárási korlátozás ezt is valamiképpen gátolja. A szimulációnkból az is látszik, hogy a beavatkozások hatása a kórházi ápoltak számában csak két hetes késéssel jelentkezik, ami a valóságnak megfelelő, reális adat.
A végig fenntartott lezárások szimulációjában (kék görbe) nyomon követhető az is, hogy a fertőzöttek hol tartózkodnak a virtuális Szegeden. Ezen a videón az látható, hogy a szimuláció folyamán a fertőzöttek száma először mindenhol növekszik - főleg az otthonokban (kék), de jelen van a különböző munkahelyeken (narancs és piros) és iskolákban (sárga) is. Később sokan megjelennek a kórházakban (nagyobb fekete pontok), majd a videó vége felé a fertőzöttek száma kezd csökkeni. Fontos, hogy a modell jelenlegi verziója még nem veszi figyelembe, hogy az Angliából kiindult B.1.1.7. nevű vírus variáns esetleg bejuthat Magyarországra és magasabb fertőzőképessége révén megállíthatja, vagy akár vissza is fordíthatja ezt a csökkenést.
Rendkívül hasznos szimulációk
A modellünk valószínűségi alapon működik, hiszen az ágensek a beállításoknak megfelelően véletlenszerűen látogatnak meg helyszíneket és futnak össze más, esetleg fertőző ágensekkel. Így minden számítás eredménye más és más, ezért többszöri lefuttatás alapján látható csak, hogy az eredmények következetesen ismétlődnek-e (öt szimuláció kis különbségeiből adódó szórás a fenti ábrán halvány háttérrel van jelezve). Mindebből már most is pontosan látszik, hogy ha a virtuális térképeken következetesen ugyanott alakulnak ki fertőzési gócok, akkor milyen intézkedéseket kellene hozni, esetünkben pedig hogyan kell javítani a modellen. Javulás várható attól, ha pontosabb adatokat kaphatunk az emberek mobilitásáról, pl. a mobil-hálózatok anonimizált adatai ilyenek lehetnek. Az anonimitást azért említjük, mert egy városszimulációnak nem célja, hogy mindenkiről minden adatot megtudjunk. Elegendő, ha az átlagos mozgási, utazási, iskolábajárási adatok alapján egy a valósággal jól egyező virtuális várost építhetünk fel, amelyen például meg tudjuk becsülni a járványkezelés hatásait.
Mindez kicsit emlékeztet a meteorológiai előrejelzések világára. Minél több adatot lehet a modellbe beépíteni, annál hosszabb időre jósolhatóak meg pontosan a jövőbeli események. Az időjárás fizikai paramétereit mért adatokból lehet megbecsülni; és a baktériumok viszonylag könnyen mérhető kölcsönhatásai is jól közelíthetőek ágens-alapú modellekkel. Egy város lakosainak a mozgásmintázata azonban ennél jóval nehezebben mérhető, különösen az olyan, az átlagostól nagyon eltérő szituációban, mint egy vírus terjedése. Rengeteg adat feldolgozásával azonban még az emberek viselkedése is jósolható, bár hosszabb távú, megbízható szimulációhoz sokkal pontosabb mozgási információra lenne szükség. Ám rövidtávú előrejelzésekre, mint amilyen például a lezárások-megnyitások hatásainak kvalitatív becslése, már most is elfogadható, és a modellünk fejlesztésével csak javulni fog.
Kérdés, mi az értelme az ilyen statisztikusan értelmezhető modell fenntartásának, fejlesztésének. Az előbbi példánál maradva induljunk ki onnan, hogy a magyar meteorológia 130 éves rendszere sem volt mindig a mai szinten, de sosem volt kérdés, hogy fenn kell-e tartani az időjárás-előrejelző rendszert. Ugyanígy, ma már sok országban fejlesztenek virtuális város- és országmodelleket, mert ezzel nemcsak a vírusok terjedését, hanem egy sor más fontos esemény hatását is le tudjuk írni. Például, hogy egy út vagy híd építése várhatóan hogyan hat a forgalom alakulására, a tömegközlekedésre vagy az áruszállításra. Ausztriában, Ausztráliában, Franciaországban már vannak ilyen rendszerek, és saját rendszerünket is ezek tapasztalatai alapján fejlesztjük.
Csikász-Nagy Attila és Pongor Sándor,
Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar
A cikk a szerzők véleményét tükrözi, amely nem feltétlenül esik egybe a Portfolio szerkesztőségének álláspontjával.
Ha hozzászólna a témához, küldje el meglátásait a velemeny@portfolio.hu címre.
Elindult a Portfolio Vélemény rovata, az On The Other Hand. A rovatról itt írtunk, a megjelent cikkek pedig itt olvashatók.
Címlapkép: Szeged üres utcája a kijárási korlátozó és védelmi intézkedések bevezetése után. Forrás: Getty Images
Nem ejt mély sebet Európán a vámháború, de Magyarország más miatt szenvedhet
Két új elemzés is azt mutatja, hogy a magyar növekedés behúzta a féket, pedig Trump támadását jól kivédték.
Kifakadt Trump embere: ha engedünk Putyinnak, legközelebb a NATO-t fogja megtámadni
Úgy látja, erőt kell demonstrálni.
Nagy veszély fenyegeti az óvatlan befektetőket, pedig könnyen ki lehetne védeni
Csak egy kis odafigyelés kell hozzá.
Itt van az újabb orosz provokáció: vadászgépek sértették meg a NATO biztonsági zónáját
Ez már aligha lehet véletlen.
Brutális díjat vezet be Trump a külföldi munkavállalókra, ez rengeteg embert érint
Ez elég komoly költségteher.
Orosz vadászgép-betörés: hivatalosan is kérik a NATO 4. cikkelyének aktiválását
Határozott válasz született.
Trump embere sejtelmesen utalgatott: tényleg megszűnhet a negyedéves jelentés?
Lehet, hogy komolyan kell venni az elnök hihetetlen ötletét.
Közép-Európát az összevisszasága teszi alkalmazkodóképessé
Közép-Európa túlélését pont az a töredezettség, autonómiavágy és sokértelműség biztosítja, amit szeretünk benne és amit sokszor fejlődése korlátának tekintünk. Közép-Európa sajá
Jóváhagyta az Európai Parlament a karbonvám (CBAM) módosításokat
A CBAM (Carbon Border Adjustment Mechanism, karbonvám) kötelezettségek teljesítésének átmeneti időszaka 2025 végén lezárul. Az Európai Bizottság az eddigi tapasztalatok alapján szükségesnek

A társasági adó egy érdekes állatfaj
Az elmúlt héten élénk párbeszéd és találgatás indult az esetleges TAO-emelésről, ezért megkérdeztük Regős Gábort, a Gránit Alapkezelő vezető közgazdászát - lentebb a válaszai. The po
Rekordroham: 152 ezer háztartás rohanhat az Otthon Start hitelért a következő fél évben
A GKI friss felmérése szerint a lakosság 8,2%-a készül igénybe venni az új támogatott hitelt. De kik tervezik igényelni a kedvező lakáshitel programot? Milyen rekordok dőltek már meg az első
És a tengeralattjárókat ki fogja szabályozni?
E heti adásunkban mi úszunk, a tengeralattjárók viszont elsüllyednek. Szabó Dávid meg szakért. Valamelyest. Milyen platformokon találjátok még meg? A HOLD After Hours podcastek megtalálhatók..

Zöld szállodák: így formálja át a technológia a jövő utazásait
Képzeljünk el egy hotelt, ahol a zuhany pontosan jelzi, mennyi vizet használunk, az esővíz rögtön a medencébe kerül, a reggelinél pedig pontosan annyit főznek, amennyit val
Mennyit fogsz keresni?
Nemrég láttam Redditen egy kérdést, hogy mennyit keresnek az emberek a multin kívüli életben. Az internet nem egy jó merítés, mert általában a jobb helyzetben lévők használják, illetve bizo
Superwood: a fa, amely az acéllal is felveszi a versenyt
Genetikailag módosított fa, amely új dimenziót nyithat az építőanyagok világában.

Tőzsdei túlélőtúra: Hogyan kerüld el a leggyakoribb kezdő hibákat?
A tőzsdei vagyonépítés során kulcsfontosságú az alapos kutatás és a kockázatok megértése, valamint a hosszú távú célok kitűzése és kitartó befektetési stratégia követése.
Tőzsde kezdőknek: Hogyan ne égesd el a pénzed egy hét alatt!
A tőzsde világában a lelkesedés könnyen drága hibákhoz vezethet – előadásunk abban segít, hogy kezdőként is megértsd a legfontosabb alapelveket, felismerd a kockázatokat, és elkerüld, hogy egy hét alatt elolvadjon a megtakarításod
Semmi sem állítja meg a forint dicsőséges menetelését?
Lehet még erősebb a hazai fizetőeszköz?
Szinte naponta hagyják abba a tejtermelést a kis tehenészetek
2800-3000 gazdaság maradt a tízezres nagyságrendből.
Megjött az év egyik legjobban várt döntése – Mit várhatnak ettől a befektetők?
Jöhet a kamatcsökkentési ciklus?
